Multiscale simulations of carbon nanotube nucleation and growth: electronic structure calculations.

نویسندگان

  • J C Wells
  • D W Noid
  • B G Sumpter
  • R F Wood
  • Q Zhang
چکیده

Several first-principles surface and bulk electronic structure calculations relating to the nucleation and growth of single-wall carbon nanotubes are described. Density-functional theory in various forms is used throughout. In the surface-related calculations, a 38-atom Ni cluster and several low-index Ni surfaces are investigated using pseudopotentials and plane-wave expansions. The energetic ordering of the sites for C atom adsorption is found to be the same, with the Ni(100) facet favored. The bulk diffusion coefficient of C in Ni as a function of cluster size and temperature is calculated from various molecular dynamics approaches. In another group of bulk-related calculations, Gaussian orbital basis sets are used to study a cluster or "flake" containing 14 C atoms. The flake is a segment of three hexagons from an "unrolled" carbon nanotube, with an armchair termination. The binding energies of C, Ni, Co, Fe, Cu, and Au atoms to it were calculated in an effort to gain insight into the mechanism for the high catalytic activity of Ni, Co, and Fe and the lack of it in Cu and Au. The binding energies of Cu and Au are about 1 eV less than those of the three catalytic elements. Similar methods are used to study the initial stages of nanotube growth within the context of classical nucleation theory. Finally, issues relating to the establishment of a fundamental catalytic mechanism are addressed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic band structure of a Carbon nanotube superlattice

By employing the theoretical method based on tight-binding, we study electronic band structure of single-wall carbon nanotube (CNT) superlattices, which the system is the made of the junction between the zigzag and armchair carbon nanotubes. Exactly at the place of connection, it is appeared the pentagon–heptagon pairs as topological defect in carbon hexagonal network. The calculations are base...

متن کامل

Electronic band structure of a Carbon nanotube superlattice

By employing the theoretical method based on tight-binding, we study electronic band structure of single-wall carbon nanotube (CNT) superlattices, which the system is the made of the junction between the zigzag and armchair carbon nanotubes. Exactly at the place of connection, it is appeared the pentagon–heptagon pairs as topological defect in carbon hexagonal network. The calculations are base...

متن کامل

A First-Principles Study on Interaction between Carbon Nanotubes (10,10) and Gallates Derivatives as Vehicles for Drug Delivery

First principles calculations were carried out for investigation the novel 7-hydroxycoumarinyl gallates derivatives in gas and liquid phases using density functional theory (DFT) method. Computational chemistry simulations were carried out to compare calculated quantum chemical parameters for gallates derivatives. All calculations were performed using DMol3 code which is based on DFT. The Doubl...

متن کامل

Density Functional Theory Calculations of Functionalized Carbon Nanotubes with Metformin as Vehicles for Drug Delivery

Drug delivery by nanomaterials is an active emergent research area and CNTs draws considerable potential application owing to its unique quasi one-dimensional structure and electronic properties. Single walled carbon nanotubes and carbon fullerenes can be used in drug delivery due to their mechanical and chemical stability. The past few years, increasing attention by several reputed groups has ...

متن کامل

Investigation of Vacancy Defects on the Young’s Modulus of Carbon Nanotube Reinforced Composites in Axial Direction via a Multiscale Modeling Approach

In this article, the influence of various vacancy defects on the Young’s modulus of carbon nanotube (CNT) - reinforcement polymer composite in the axial direction is investigated via a structural model in ANSYS software. Their high strength can be affected by the presence of defects in the nanotubes used as reinforcements in practical nanocomposites. Molecular structural mechanics (MSM)/finite ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of nanoscience and nanotechnology

دوره 4 4  شماره 

صفحات  -

تاریخ انتشار 2004